IMPLEMENTATION OF LANDAU-FLUID CLOSURES FOR TOROIDAL SIMULATIONS IN BOUT++*

A. M. Dimits,¹ in collaboration with I. Joseph,¹ S.S. Kim² M. V. Umansky,¹ P. W. Xi,^{1,3} X. Q. Xu¹

Presented at the 2013 BOUT++ workshop Livermore, CA, Sept. 3, 2013

◆□▶ ◆御▶ ◆陰▶ ◆陰▶ ○陰

¹Lawrence Livermore National Laboratory, Livermore, CA, USA ²WCI Center for Fusion Theory, NFRI, Korea ³School of Physics, Peking University

Work performed for U.S. DOE by LLNL under Contract DE-AC52-07NA27344 and LLNL LDRD project 12-ERD-022.

Simulations of tokamak (and other MFE) edge plasmas need to go beyond collisional (Braginskii) models

- Kinetic effects are important in the tokamak edge
- Gyro-Landau-fluid (GLF) approach is a way to incorporate some kinetic effects into fluid simulation codes such as BOUT++
- Radial inhomogeneities and large relative perturbation amplitudes necessitate a non-Fourier implementation of the Landau-fluid (LF) closure operators
- Related work at this workshop:
 - ► S.S. Kim: Gyro-Fluid Simulations using BOUT GLF Code (Friday 9.30am)
 - ► P. W. Xi: Gyrofluid Simulations on KBM and ELMs using BOUT++ (Thursday, 11.10am)
 - ► T. Xia: Six-Field Two-Fluid Simulations (Thursday, 2pm)

The Landau-fluid (LF) closure operators are highly nonlocal in configuration space

- 1D (e.g., parallel) collisionless closure phase-mixing:
 - $ightharpoonup \gamma \propto -|k| v_{\rm th}$
 - e.g., 3-moment model (collisionless: Hammett-Perkins, PRL '90):

$$\tilde{Q}_{k} \approx -\alpha n_{0} v_{\text{th}} \frac{1}{|k|} \left(ik\tilde{T}_{k} \right) \iff \tilde{Q}(z) \approx \int_{-\infty}^{\infty} dz' G(z - z') \tilde{T}(z')$$

$$G(z) = \frac{\alpha}{\pi} n_{0} v_{\text{th}} \frac{1}{z}$$

with collisions (Beer-Hammett, Phys. Plasmas '96):

$$\tilde{Q}_k \approx -\frac{8n_0 v_{\rm th}^2 i k \tilde{T}_k}{\sqrt{8\pi} |k| v_{\rm th} + (3\pi - 8) \nu_s}$$

• If spatially homogeneous closure model can be used, the LF operators are easy to represent and efficient to calculate in Fourier (k_{\shortparallel}) space.

The LF closure operators for edge must deal with spatial inhomogeneities

- Example: toroidal Landau-fluid ($|\omega_d|$) closure:
- e.g., Beer-Hammett '96, 3+1 equations:

$$\frac{dp_{\shortparallel}}{dt} = \operatorname{stuff} - i\omega_d \left(7p_{\shortparallel} + p_{\perp} - 4n\right) - 2\left|\omega_d\right| \left(\nu_1 T_{\shortparallel} + \nu_2 T_{\perp}\right)$$

• ω_d defined by

$$i\omega_{d}\Psi = v_{d}\hat{\mathbf{v}}_{d} \cdot \nabla_{\perp}\Psi$$

$$= \frac{1}{2(T_{\text{norm}}B_{0})} \left[\frac{T_{\perp}}{B_{0}}\hat{\mathbf{b}} \times \nabla B_{0} \cdot \nabla + T_{\square}\hat{\mathbf{b}} \times \left(\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}} \right) \cdot \nabla \right] \Psi$$

- ▶ In the edge, T_{\perp} and T_{\shortparallel} have significant spatial variations due to
 - ★ equilibrium profile variation
 - ★ finite amplitude perturbations

Computation of the LF operators becomes challenging when significant spatial inhomogeneities are present

- ullet Operators are no longer local in k space
 - ▶ Fourier-based computation inefficient
- LF operators intrinsically nonlocal in configuration space → mesh-based discretization schemes used for derivatives (finite difference, volume, element, etc.) are not directly applicable.
- Straightforward direct approach:
 - discretize configuration-space kernel
 - aplply by direct convolution or matrix multiplication
 - \blacktriangleright computationally expensive; N_g^2 scaling [vs. $N_g \log{(N_g)}$ for local- k Fourier]
- ACCURATE APPROXIMATIONS ARE POSSIBLE THAT CAN BE IMPLEMENTED WITH FOURIER-LIKE SCALING.

Approximation by a sum of Lorentzians allows for computation using efficient sparse linear solvers

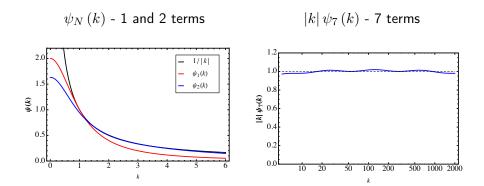
- ullet Lorentzians in k space are inverses of Helmholtz operators in real space
- Could provide very efficient way to implement nonlocality
- Consider

$$\frac{1}{|k|^{\gamma}} \approx \psi_{\infty}(k, \alpha, \gamma) \approx \sum_{n = -\infty}^{\infty} \frac{\alpha^{\gamma n}}{k^2 + \alpha^{2\gamma n}}, \ 0 < \gamma < 2$$

- Converges pointwise; satisfies $\psi_{\infty}\left(\alpha k,\alpha\right)=\alpha^{-\gamma}\psi_{\infty}\left(k,\alpha\right)$
- Each individual component of the sum has the correct parity.
- With the above scaling of the height and width, different terms approximately "fill in" different parts of the $1/\left|k\right|$ curve
- Suggests an approximation by a simple truncation.

Simple truncated sum of Lorentzians is very accurate, even with few terms

$$\frac{1}{|k|} \approx \psi_N(k, \alpha, \beta, k_0) \approx \beta \sum_{n=0}^{N-1} \frac{\alpha^n k_0}{k^2 + (\alpha^n k_0)^2}$$



Systematic collocation analysis \rightarrow improved fits: collisionless

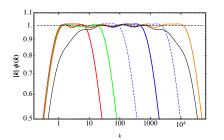
Collisionless - good (near best) fit is of the form

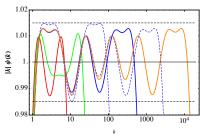
$$1/|k| \approx \sum_{n=0}^{N-1} \frac{\zeta_n \alpha^n \kappa_0}{k^2 + (\alpha^n \kappa_0)^2},$$

- Match exact and approximate forms at collocation points
 - $k = k_n, k_n = \alpha^{n-1} \kappa_0, n = 1, 3, ..., N-2$
 - shift end collocation points: $k_0 = \kappa_0/\eta$, $k_N = \eta \alpha^{N-1} \kappa_0$.
- ullet ightarrow matrix problem that can be handled e.g., by Mathematica

Systematic collocation analysis → improved fits: collisionless

- Extends spectral range of good fit by ~10-100 for given N, α .
- Improved fits vs. original fit
- Spectral range of good fit: 7, 20, 80, 400, 2000, 10000

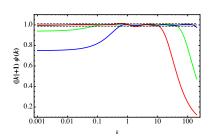


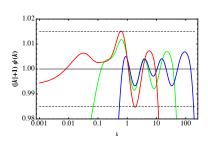


Systematic collocation analysis \rightarrow improved fits: collisional

$$\frac{1}{(|k|+1)} \approx \sum_{n=-M}^{N} \frac{\zeta_n}{k^2 + \alpha^{2n}},$$

- Collocation points: $k_n = \alpha^n$, n = -M, ..., N-1, $k_N = \eta \alpha^N$.
- 5 terms \rightarrow good fit over spectral range ≈ 400 , $\forall k \lambda_{mfp}$.
- $\alpha = 3$; N + M + 1 = 5,





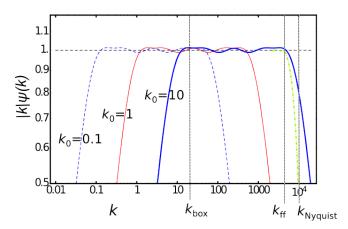
Implementation is by replacement of Lorentzians in wavenumber space by Helmholtz-equation solves

- Solve via a tridiagonal (for 2-point differences) or banded (for higher-order differences) matrix solution
- Direct solvers work well
 - the matrices are well conditioned
 - parallelizeable along direction of solve
- Sum the results of the matrix solves

$$\Psi(z) \approx \sum_{n} \zeta_{n} \alpha^{n} \kappa_{0} \left[(\alpha^{n} \kappa_{0})^{2} - \frac{\partial^{2}}{\partial z^{2}} \right]^{-1} S(z)$$

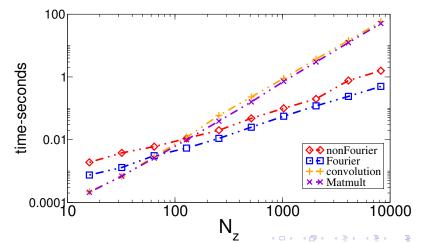
Normalizing wavenumber k_0 must be chosen to have region of good fit overlap with resolved modes

- Choose k_0 so that
 - k_{box} is to right of left boundary of good fit
 - $ightharpoonup k_{
 m ff}$ is to left of right boundary of good fit



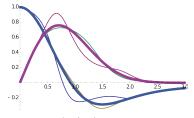
Sum-of-Lorentzians method has similar computational scaling to Fourier

- Scales as $N_z \log{(N_z)}$, c.f. N_z^2 for direct convolution or matrix multiplication.
- Crossover point is at $N_z \approx 128 \Rightarrow$ advantage for $N_z \gtrsim 200$.



Using sum of Lorentzians approximation preserves Hammett-Perkins '90 LF response functions

- Implemented Mathematica scripts; reproduced HP90 calculations,
- modified to also use sum of Lorentzians for $1/|\mathbf{k}|$.



 $R = R_4 (k/k_0),$ $k_0 = 1, 10, 100.$

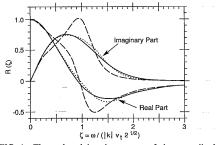
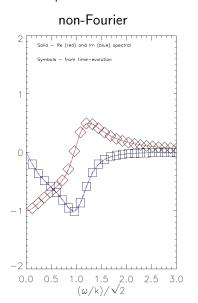
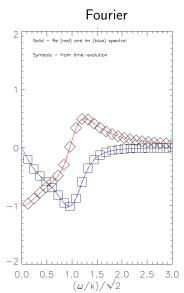


FIG. 1. The real and imaginary parts of the normalized response function $R(\zeta) = -\bar{n}T_0/n_0e\bar{\phi}$ vs the normalized frequency ζ . The solid lines are the exact kinetic result for a Maxwellian, $R(\zeta) = 1 + \zeta Z(\zeta)$. The dashed lines are from the three-moment fluid model with $\Gamma = 3$, $\mu_1 = 0$, and $\chi_1 = 2/\sqrt{\pi}$. The dotted lines are from the four-moment model.

Implementation using sum of Lorentzians approximation in BOUT++ preserves collisionless LF response functions





The LF terms have been implemented in BOUT++

- $|k_{ii}|$ terms implemented using existing parallel "Laplace" solver
 - ► Has correct offset periodic parallel boundary conditions
- $|\omega_d|$ terms implemented using modification of existing perpendicular Laplace solver(s)
 - Existing solver solves
 - Modify to solve

$$\left(c_1 \nabla_{\perp}^2 + \frac{1}{c_2} \nabla_{\perp} c_2 \cdot \nabla_{\perp} + c_3\right) \Psi = S$$
$$\left[\alpha^2 k_{\phi 0}^2 - \left(\hat{\mathbf{V}}_{\mathbf{d}} \cdot \nabla\right)^2\right] \Psi = S$$

• Radial inhomogeneities in ∇B and curvature drifts can be included via the manifestly conservative dissipative form:

$$\left|\mathbf{k}.\mathbf{V_{d}}\left(x\right)\right|\Psi=\nabla\cdot\left[\hat{\mathbf{V}}_{\mathbf{d}}\sqrt{\mathbf{V_{d}}}\frac{1}{\left|\mathbf{k}.\hat{\mathbf{V}}_{\mathbf{d}}\right|}\sqrt{\mathbf{V_{d}}}\left(\hat{\mathbf{V}}_{\mathbf{d}}\cdot\nabla\Psi\right)\right]$$

Toroidal Landau-fluid ($|\omega_d|$) closure

• Definition of $i\omega_d$

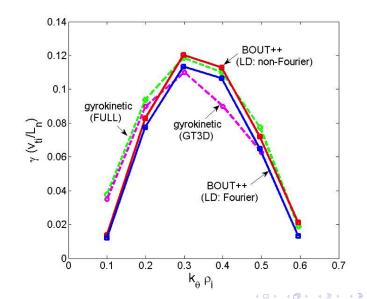
$$\begin{array}{lcl} i\omega_{d}\Psi & = & i\mathbf{V}_{d}\cdot\mathbf{k}_{\perp}\Psi \\ & = & \frac{1}{2(T_{\mathrm{norm}}B_{0})}\left[\frac{T_{\perp0}}{B_{0}}\hat{\mathbf{b}}\times\nabla B_{0}\cdot\nabla + T_{\shortparallel0}\hat{\mathbf{b}}\times\left(\hat{\mathbf{b}}\cdot\nabla\hat{\mathbf{b}}\right)\cdot\nabla\right]\Psi \end{array}$$

- $T_{\perp 0}=T_{\perp 0}\left(\psi\right)$, $T_{\shortparallel 0}=T_{\shortparallel 0}\left(\psi\right)$; eventually will need to generalize to finite amplitude
- ullet Decompose \mathbf{V}_d and $abla\Psi$ into components

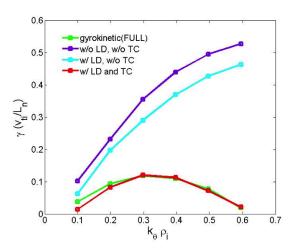
$$\begin{aligned} \mathbf{V}_d &= V_d^i \mathbf{e}_i \\ \nabla \Psi &= \mathbf{e}^i \partial_i \Psi \\ \mathbf{V}_d \cdot \nabla \Psi &= V_d^i \partial_i \Psi \end{aligned}$$

$$\left\{ \left[\left(V_{d}^{\phi} \right)^{2} k_{\phi}^{2} - \left(V_{d}^{\psi} \right)^{2} \partial_{\psi}^{2} - 2i V_{d}^{\psi} V_{d}^{\phi} k_{\phi} \partial_{\psi} \right] + \alpha^{2} \left(V_{d0} \right)^{2} k_{\phi0}^{2} \right\} \Psi = S$$

Good agreement is achieved with previous calculations for ITG instability frequencies and growth rates



The Landau-Fluid terms are essential for agreement of the GLF toroidal ITG linear growth rates with gyrokinetic results



Conclusions

- We have developed a new non-Fourier method for the calculation of Landau-fluid operators.
- Useful for situations with large (including background) spatial inhomogeneities.
- Good accuracy (relative error $\lesssim 1.5\%$ over wide spectral range) is readily achievable with 5 terms for all $k\lambda_{\rm mfp}$.
- Computational cost has value and scaling similar to Fourier method.
- Considerable advantage over direct convolution or matrix multiplication for $N_g \gtrsim 200$.
- Implemented for parallel ($|k_{\shortparallel}|$) and toroidal ($|\omega_{\rm d}|$) LF operators in BOUT++
- Good agreement is achieved with previous calculations for ITG instability frequencies and growth rates.

Near-term ongoing work: Nonlinear verification with all "known" GLF physics (see APS-DPP talk)

- Implementation of Dorland nonlinear phase-mixing closure:
 - Same machinery as for $|\omega_d|$ closure $(\mathbf{v_d} o \hat{
 abla}_\perp^2 \mathbf{V}_\Phi)$
- GLF model for zonal flows:
 - Based on work by Rosenbluth, Hinton & Waltz; Beer & Hammett; Sugama, Watanabe & Horton.
 - Some reworking and inclusion of finite banana width as well as FLR (can't separate for typical tokamak edge or tight aspect ratio)
 - Include collisions.
- ullet Extend implementation of ot closure terms to (completely) non-Fourier solvers.
- Extensions of closures to large amplitude:
 - Still phase mixing, but can include some inhomogeneity effects in closures.

